

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

Electronica 2006 – Embedded Conference

Embedded Linux Quality Assurance: Unit Testing with Open Source

Author: Roland Stigge <stigge@philosys.de>

Abstract

In the Open Source world, there are well established tool suites in use for common build environ-
ments, e.g. make, autotools, which are increasingly utilized for quality assurance tasks. The goal is an
integration of unit tests and more general testing with certain properties.

Testing must always be automated to the highest possible degree. Otherwise, developers won't
employ these in their daily work. Unit testing doesn't necessarily mean exact obedience to Extreme
Programming rules as its origin would suggest. Nevertheless, there must not be an unnecessary
overhead of writing additional tests for new test cases, and actually running the tests must be easy
enough for the developer to regard the process as a gain higher than the loss of time caused by it.

Therefore, fast and convenient make test runs should be available as it is also becoming more and
more common in Open Source packages. Further, implementing test code should be an integral part
of the overall development in a certain project, package or general programming effort. Therefore, it
should be possible to work on test code alongside the general development on a project. Ideally, it is
maintained in the same code repository for every developer (and other involved persons) to access
and execute.

This way, it is even possible to run test suites fully automatically (e.g. a "nightly test" as known as from
"nightly builds").

For every programming language, there exists at least one established and freely available unit testing
framework, e.g. JUnit for Java, CUnit and autounit for C and PyUnit for Python. The common functio-
nality here is the collection of test cases with test code provided by the respective developer and a
standardized way of building up and tearing down a test harness.

The application of tests is not restricted to functions and methods but can be expanded to higher level
functionality by implementing tests with scripting languages like Shell, Perl and Python that can
directly utilize the development environment's features. This way, an automated test suite can cover
several levels of functionality, from functions and methods to library and user interfaces.

For embedded development, especially in a Linux environment, special care must be taken for
successfully applying the above mentioned methods. In general, they can be applied to embedded
development as known in the common development case, but with some additional features and
properties, like cross compilation and host-target connection (setup and running remote tests).

This paper describes a method for integrating tests in embedded software development projects, after
introducing common unit test frameworks, the GNU/Linux build environment and the integration of
both. A way of setting up a test harness in a host-target configuration will be presented.

As for general Quality Assurance, the goal is to automatically detect problems and bugs in the embed-
ded software to be developed, therefore increasing quality by minimizing cost of testing. By integrating
a high degree of software tests into the process early on, later manual tests can be minimized.

This presentation explicitly does not cover automated test code generation as known from some
proprietary software testing tools.

www.philosys.de
mailto:info@philosys.de
mailto:stigge@philosys.de

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

Introduction

Quality Assurance in software development, especially in the Open Source world, is commonly under-
represented in today's projects. This is typical for the whole business except for projects necessarily
bound to the integration of Quality Assurance and testing into the process early on (e.g. aviation,
medical instruments, nuclear power plants).

This paper concentrates on Unit Testing which enables the developer to supplement the source code
of a project with a test suite that can be run in the highest automated way possible, thus minimizing
time and cost of running tests, lowering the barrier of actually repeating tests everywhere in the de-
velopment process and making the project schedule more predictable. Instead of developing fast and
spending most of the time with bug fixing (especially in late phases of the project) and having a long
and unpredictable debugging period, we can invest more time in defining functionality which can be
tested automatically from C-function level (even assembler) upwards (actually, up to an impressive
high level).

Other important Quality Assurance measures which can be of great help to most projects (but can't be
discussed in detail here) are the following:

 Bug tracking systems (request tracker, ticket system, issue tracker), e.g. Request Tracker,
Debbugs, OTRS

 Memory Monitor (memory profiler, leak tester), e.g. Valgrind, Electric Fence
 Software Code checkers, e.g. lint-like tools
 Compiler Warnings, e.g., gcc -Wall -Wextra (!)
 Black box testing frameworks, e.g. Dejagnu

In the following, we will discuss a certain scenario of developing software packages in the GNU / Open
Source style (but not being bound to this paradigm license-wise). Some preconditions for this are:

 The target machine is powerful enough and has got enough resources to run a certain
overhead of test software in it. This includes memory and connectivity (network or some kind
of terminal access, e.g. serial connection)

 Most test cases for functions (in our case, C language functions) can be created with a

harness in an automated way (e.g. necessary input sequences can be triggered in some way)

1. Tools and Frameworks

Traditional tool suites employed in Unit Testing are derived versions of the well known JUnit testing
framework by Kent Beck and Erich Gamma, instantiated for the respective programming languages.
Although relatively easily to implement in a new language, this kind of tool is very powerful and com-
monly respected which is reflected in the availability of the framework for virtually every language.

Sometimes, there are even multiple famous independent implementations for a single language avai-
lable, depending on the kind of development environment. Common examples for this framework are:

 JUnit for Java
 CUnit and autounit for C
 PyUnit/unittest for Python
 Test::Unit and TAP for Perl

This is just an incomplete list, but you will find the respective version for your favourite language quite
easily. Although unit testing is employed to a high degree in Extreme Programming, this testing
strategy is not necessarily connected to XP in general. It can be used in many programming styles and
adapted to it (e.g. frequency, time and number of test runs, evaluation of test protocols etc).

www.philosys.de
mailto:info@philosys.de

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

The tools used throughout this presentation comprise standard tools of the GNU world, where
possible. This includes well-known frameworks like the autotools (autoconf, automake, libtool, aclocal,
autoheader) and the additional tools called GNU autounit, make, gcc. They are well established and
widely used in the Open Source world. Here, they are only described shortly, please refer to the man
and info pages for details:

 make:
The standard build system under UNIX and GNU/Linux. Although alternatives exist, it is still
the most widely used build framework driven by Makefiles which describe dependencies for
building objects, executables and libraries. Running make automatically resolves dependen-
cies.

 gcc:

The GNU Compiler Collection, often also referred to as "GNU C Compiler", although gcc
includes compilers for Fortran, Java, C++, ObjectiveC, and more. It is used not only under
GNU but also with BSD, Solaris etc.

 autoconf:

Configuring a portable program (usually written in C/C++) for one of several supported plat-
forms is a difficult task. autoconf can automatically generate a configure script as common for
GNU/Linux software packages and generate symbols which can just be included and used in
programs. Besides that, a configure run creates the necessary Makefiles that are adapted to
the build system.

 autoscan:

Simple tool to generate an initial configure.ac to start working with. Useful for first projects that
already comprise a certain complexity of actual source code. The sources will be scanned and
handled in configure.ac with a heuristic approach.

 automake:

autoconf uses Makefile templates (Makefile.in) as input. Those have long and complicated
contents; automake can help generating those files with a set of simple definitions in
Makefile.am files.

 aclocal:

autoconf input (configure.ac) is written in the M4 macro language. Usually, only some
standard macros are used. Some of the automake related ones are included in aclocal.m4
which can easily be generated with aclocal.

 autoheader:

autoconf creates a list of macro definitions that can be used by C programs (config.h).
However, for certain cases it is useful to have a template list for these macros (config.h.in).
This is created by autoheader. Ideally, autoheader wouldn't be necessary, but in practice, it
helps with debugging.

 libtool:

A tool that helps creating static and shared libraries, automatically, and abstracting from these
different concepts. Together with autoconf, this can adapt the software package to the actual
target system.

 autoreconf:

This is a simple tool that calls programs like autoconf, autoheader, aclocal, automake and
libtoolize and more in the right order for you.

 autounit:

A C library that is a derivative of the original Unit Testing framework by Kent Beck and Erich
Gamma. It is well integrated with GNU autotools.

www.philosys.de
mailto:info@philosys.de

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

2. Applying the methods in an embedded environment

Setting up a project / package with GNU autotools is easily done everywhere (not to confuse with "well
understood"!). To learn more about this in detail, you should read the documentation of the respective
packages. A simple example for our specific field is given in the next section.

For a start, autoscan can produce a configure.ac (rename it from configure.scan) to start with, and a
Makefile.am can look as simple as:

bin_PROGRAMS = helloworld

Assuming we already set up configure.ac and some Makefile.am's, the next step would be writing
tests for our actual code. Ideally, tests would be written before actual code. You can try to achieve this
as hard as feasible, but in reality, development approaches often include some kind of evolutionary
dynamics that will prevent you from writing all tests before the first "real" code line. Also, Extreme
Programming (an origin of radical unit testing) applies to writing test cases for smaller sections of
code.

For convenience, automake already provides a means for integrating tests into our code base. Listing
executable files in the variable TESTS in Makefile.am will make automake aware of the tests located
in the respective directory; automake will create the necessary rules for us to simply issue "make
check" at build time. It is possible to integrate the tests along with the actual source code of our project
(i.e., having test code in the same directory), or maintaining test suites in a separate directory. We
strongly recommend the latter. This way, test code is well separated from the actual code, helping us
to keep out pure test code from deployment, and still providing the ease of writing new test code.

All this usually doesn't apply to the Embedded case where we want to run an executable on another
machine than the build machine. Although GNU autotools are aware of cross compiling, automake
doesn't know how to execute programs on a remote host. Maybe this is related to the fact that Embed-
ded development is too diverse, including to many completely different approaches to compiling, host-
target setup etc. But the automake authors provide a useful variable to set up a host-target connection
for tests, among other things: TESTS_ENVIRONMENT. Including setting up variables, it specifies the
command to execute for invoking the test programs (instead of /bin/sh). This makes it possible for us
to do a target connection via SSH with:

TESTS_ENVIRONMENT=ssh username@targethost

Please note that this is Makefile syntax for variable assignment. The actual contents of this variable
will be a bit different in reality (e.g., for getting the right environment on the target hosts), but the basic
functionality is shown above. The important thing here is that the command to execute will be supplied
as an argument so that SSH can execute the respective test program on the target. See the next
section for actual construction.

Besides SSH (requiring a network connection), it would be possible to just have a serial connection to
the target. The only things necessary are automatically deploying just compiled test code to the target,
invoking the programs there and evaluating the return value and stdout. While in our case this is easy
with NFS and SSH, it's relatively easy to implement a single client-server infrastructure to provide this
functionality via different connection setups. E.g., another approach would be networking via serial
lines or USB. There are many possibilities. For now, let's assume that this connection is done.

For the case of NFS exported volumes, the easiest case (as discussed in the following) is the presen-
ce of the same directory hierarchy under the software package directory on both development host
and target. Then, the only thing left to do on the target is to change to the same directory as on the
host and executing the test executable as would be done on the host.

www.philosys.de
mailto:info@philosys.de
mailto:username@targethost

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

3. An Example Test Setup

In the following, we will discuss our example in detail. The package (hellotest-XX.XX.tar.gz) can be
downloaded from http://www.philosys.de/news/... It is a regular GNU style package, and besides
setting up a cross compiler on your development host, you can use it as such. (See the file README.)

3.1. Basic Package Infrastructure

As you can see in the package's root Makefile.am:

SUBDIRS = src lib tests
test: check

The test code (tests/ directory) is separated from the actual code (src/ and lib/). Normally, the GNU
autotools target for tests is check, for convenience we also define test as an alias.

The contents of our configure.ac look like:

AC_PREREQ(2.59e)
AC_INIT(hellotest, 1.0, stigge@philosys.de)
AM_INIT_AUTOMAKE
AC_CONFIG_SRCDIR([src/main.c])
AC_CONFIG_HEADER([config.h])

Checks for programs.
AC_PROG_CC
AC_PROG_LIBTOOL

Checks for libraries.
AM_PATH_GLIB

Checks for header files.
AC_HEADER_STDC
AC_CHECK_HEADERS([fcntl.h stdlib.h string.h termios.h unistd.h])

Checks for typedefs, structures, and compiler characteristics.
AC_HEADER_TIME

AC_MSG_CHECKING(to see if we can add '-Wall -W' to CFLAGS)
if test x$GCC != x ; then
 CFLAGS="$CFLAGS -D_U_=\"__attribute__((unused))\" -Wall -W -D_GNU_SOURCE"
 AC_MSG_RESULT(yes)
else
 CFLAGS="-D_U_=\"\" $CFLAGS"
 AC_MSG_RESULT(no)
fi

Checks for library functions.
AC_FUNC_SELECT_ARGTYPES
AC_CHECK_FUNCS([memset select strstr])

AC_OUTPUT([Makefile
 src/Makefile
 lib/Makefile
 tests/Makefile])
--

www.philosys.de
mailto:info@philosys.de
www.philosys.de/news/
mailto:stigge@philosys.de

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

Most of the lines in configure.ac are present to make sure that everything is in place (and actually
checking, where exactly). This information will be used later in Makefiles to find the respective header
files, dependent libraries etc. The last definition of AC_OUTPUT specifies, which Makefiles should be
generated.

src/Makefile.am:

bin_PROGRAMS = hellotest

hellotest_SOURCES = hello.c main.c
noinst_HEADERS = hello.h

And lib/Makefile.am:

lib_LTLIBRARIES = libhellotest.la

libhellotest_la_SOURCES = hellotest.c
include_HEADERS = hellotest.h

As we can see, defining the sources and target file of a library is as easy as defining a program. Up to
here, we have only defined the program and library under test. In the following, we will discuss test
infrastructure and code of our example.

3.2. Tests

As discussed before, we can list actual tests in the TESTS variable in Makefile.am's. Consider the
example Makefile.am for our tests/ directory:

TARGET_LOGIN=root@targetdev
TESTS_ENVIRONMENT=ssh $(TARGET_LOGIN) "cd `pwd` ; "

OUR_SCRIPT_TESTS = test-test
OUR_BINARY_TESTS = test-functions test-static test-library

OUR_TESTS = $(OUR_SCRIPT_TESTS) $(OUR_BINARY_TESTS)

TESTS = $(OUR_TESTS)

check_PROGRAMS = $(OUR_BINARY_TESTS)

test_functions_SOURCES = test-functions.c
test_functions_LDADD = ../src/hello.o
test_functions_LDFLAGS = -lau-c-unit $(GLIB_LIBS)
test_functions_CFLAGS = $(GLIB_CFLAGS)

test_static_SOURCES = test-static.c
test_static_LDFLAGS = -lau-c-unit $(GLIB_LIBS)
test_static_CFLAGS = $(GLIB_CFLAGS)

test_library_SOURCES = test-library.c
test_library_LDADD = ../lib/libhellotest.la
test_library_LDFLAGS = -lau-c-unit $(GLIB_LIBS)
test_library_CFLAGS = $(GLIB_CFLAGS) -I../lib/

www.philosys.de
mailto:info@philosys.de
mailto:root@targetdev

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

check_SCRIPTS = $(OUR_SCRIPT_TESTS)
noinst_SCRIPTS = $(OUR_SCRIPT_TESTS)
EXTRA_DIST = $(OUR_SCRIPT_TESTS)

TESTS_ENVIRONMENT contains a command (cd `pwd`) to go to the respective directory on the
target before running the actual executable. The test programs are divided into binary tests (our own
variable OUR_BINARY_TESTS) and script tests (our own variable OUR_SCRIPT_TESTS). This is
necessary to tell automake how to generate the necessary build rules. We specify these lists in the
check_PROGRAMS and check_SCRIPTS automake variables to support the creation of the check
rule. The different sections regarding function tests, library tests and tests of static C functions are
discussed in the following subsections.

In the automake/autounit case, tests are divided into the tests listed in the Makefile.am. These
programs can have multiple test case implementations each of which are run inside test harness code.

3.2.1. Function Tests

To test functions that are global to an object (non-static), we can just link our test code with the object
from the actual source directory (as seen above in the Makefile.am) and use the functions:

#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <glib.h>

#include <autounit/autounit.h>

#include "../src/hello.h"

#define TTY_DEVICE "/dev/ttyX1"

gint
test_functions_tty_open(autounit_test_t *t)
{
 int fd;

 fd = dev_open(TTY_DEVICE);
 au_assert(t, fd >= 0, "dev_open didn't return valid file decriptor");

 if (fd >= 0) {
 dev_close(fd);
 }

 return TRUE;
}

[...]

static autounit_test_group_t tests[] = {
 {"test_functions_tty_open", test_functions_tty_open, TRUE, TRUE},
 {"test_functions_tty_open_badfile", test_functions_tty_open_badfile,
TRUE, TRUE},
 {"test_functions_tty_close", test_functions_tty_close, TRUE, TRUE},
 {"test_functions_tty_init", test_functions_tty_init, TRUE, TRUE},
 {"test_functions_tty_ok", test_functions_tty_ok, TRUE, TRUE},
 {0, 0, FALSE, FALSE}
};

www.philosys.de
mailto:info@philosys.de

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

int main(int argc _U_, char* argv[] _U_) {
 autounit_suite_t *test_suite;
 gint result;

 test_suite = au_new_suite(g_string_new("Function Tests"), 0, 0);
 au_add_test_group(test_suite, tests);
 result = au_run_suite(test_suite);

 au_delete_suite(test_suite);

 return result;
}

As we can see here, multiple tests can be specified in a group and be run together in an initialized test
suite (the au_ prefix refers to autounit). In the above example, we just set the last two arguments of
au_new_suite() to zero, which can be actual function pointers to setup and teardown functions which
would be called before and after every test function call. In our example, the small setup code is
contained in the test functions. Besides, the setup and teardown code can only be reused and set via
au_new_suite if it is equal for all functions in the suite which is not the case here.

Within the actual tests, several assertions can be defined which must be fulfilled at the respective point
in the code. Otherwise, the whole test will be counted as FAILED. The result of all tests will be
accumulated and displayed in the end, as we will see later.

3.2.2. Library Tests

As the Makefile.am suggested, we can just link our test code together with the library (*.la abstraction
for static and shared libraries) under test. With libtool created libraries it is even not yet decided if it's a
static or shared library. The respective actions will be taken at configure time.

Here is an example of library testing code:

#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <glib.h>
#include <autounit/autounit.h>

#include <hellotest.h>

gint
test_library_say_hello(autounit_test_t *t)
{
 char *s;

 s = say_hello();
 au_assert(t, s != NULL, "say_hello() returned NULL");
 au_assert(t, strlen(s) == 6, "say_hello() returned string of wrong
length");
 au_assert(t, strcmp(s, "Hello!") == 0, "say_hello() returned wrong
string");

 return TRUE;
}

[...]

int main(int argc _U_, char* argv[] _U_) {

www.philosys.de
mailto:info@philosys.de

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

 autounit_suite_t *test_suite = NULL;
 autounit_suite_t *stresstest_suite = NULL;
 gint result;

 test_suite = au_new_suite(g_string_new("Library Tests"), 0, 0);
 au_add_test_group(test_suite, tests);
 result = au_run_suite(test_suite);

 au_delete_suite(test_suite);

 if (!result) {
 stresstest_suite = au_new_suite(g_string_new("Stress Tests"), 0, 0);
 au_add_test_group(stresstest_suite, tests);
 result = au_run_stress_suite(stresstest_suite, 100, 5);

 au_delete_suite(stresstest_suite);
 }

 return result;
}

Thus, library test code is quite similar to normal function tests. In addition, the above example contains
stress test code for the library (run in the successful normal test case), which in principle is not specific
for the library case and will be discussed in one of the following subsections.

3.2.3. Static Function Tests

Testing static functions in normal code is not really easy to do gracefully without interfering with the
actual code to test. Since we don't want to change the deployment code for testing, we need to
employ one of several possible workarounds here. We just include the C-source file in the test code:

#include "../src/hello.c"

Right, this construction is not the common use of the C pre-processor. But in our case, it works fine.
We just need to make sure that the included C-file doesn't include another main() function and that
other included files work well with this construction.

3.2.4. Stress Tests

As seen in the library test example above, the autounit library provides a means to do stress test
suites instead of normal tests. The respective tests are just run n times, with n specified with
au_run_stress_suite().

3.2.5. Script Tests

Since our source code doesn't consist completely of C code, we can run test programs that are imple-
mented as shell scripts and other languages. As defined in the Makefile.am above, the respective files
just need to be listed in the TESTS variable. Then, they will be run automatically together with the
other tests. When implementing, we just need to take into account that the program will be run on the
embedded target.

The example package contains a script test called test-test which just writes running on `hostname`...
to stdout.

www.philosys.de
mailto:info@philosys.de

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

3.3. Target Connection

As stated in the Makefile.am, our TESTS_ENVIRONMENT variable defines an SSH approach (IP
networking) to target connection. The TARGET_LOGIN variable can be used (actually, practically be
specified on the command line on make check) as a login on the target. To prevent make check from
asking for a password on target login, we need to enable public key authentication on the target. A
detailed step by step description is contained in the README file in the example tarball.

3.4. Running the tests

When everything is set up correctly, a make check run should result in something like this:

[...]
make check-TESTS
make[2]: Entering directory `/home/stigge/electronica/hellotest/tests'
Test running on targetdev...
PASS: test-test
Function Tests
.....
OK 5 succeeded 10.655778 s (655778 us) total elapsed time
PASS: test-functions
Static Tests
..
OK 2 succeeded 2.210588 s (210588 us) total elapsed time
PASS: test-static
Library Tests
.....
OK 5 succeeded 0.006428 s (6428 us) total elapsed time
Stress Tests (100 iterations)
(1).....(6).....(11).....(16).....(21).....(26).....(31).....(36).....(41).
....(46).....(51).....(56).....(61).....(66).....(71).....(76).....(81)....
.(86).....(91).....(96).....
OK 5 succeeded 0.878457 s (878457 us) total elapsed time
PASS: test-library
==================
All 4 tests passed
==================
make[2]: Leaving directory `/home/stigge/electronica/hellotest/tests'
[...]

Important to mention here is the fact that the individual output from the test actually comes from the
target (except the PASS: lines that are generated on the host). The statistics (All 4 tests passed)
originates from the development host.

With an error in between, the output looks like:

[...]
make check-TESTS
make[2]: Entering directory `/home/stigge/electronica/hellotest/tests'
Test running on targetdev...
PASS: test-test
Function Tests
...!.
FAIL 1 of 5 Function Tests 10.688908 s (688908 us) total elapsed time

www.philosys.de
mailto:info@philosys.de

Edisonstr. 6 – 85716 Unterschleißheim – Tel. 089/321407-0 – Fax 089/321407-12 – www.philosys.de – Email: info@philosys.de

test_functions_tty_init: elapsed time 4.248237 s
(248237 us):failed assertions (1 of 1):
test-functions.c:88:FAIL:dev_init was unsuccessful
FAIL: test-functions
Static Tests
..
OK 2 succeeded 2.219318 s (219318 us) total elapsed time
PASS: test-static
Library Tests
.....
OK 5 succeeded 0.006387 s (6387 us) total elapsed time
Stress Tests (100 iterations)
(1).....(6).....(11).....(16).....(21).....(26).....(31).....(36).....(41).
....(46).....(51).....(56).....(61).....(66).....(71).....(76).....(81)....
.(86).....(91).....(96).....
OK 5 succeeded 0.874148 s (874148 us) total elapsed time
PASS: test-library
===================================
1 of 4 tests failed
Please report to stigge@philosys.de
===================================
make[2]: *** [check-TESTS] Error 1
make[2]: Leaving directory `/home/stigge/electronica/hellotest/tests'
[...]

This output should be pretty self-explanatory, including output of our initial script test (test-test), the
test-functions.c, test-static.c and test-library.c which are all included completely in our example
package.

4. Conclusion

Throughout this presentation, we discussed the integration of unit tests in an embedded environment,
using tools from the Open Source world and suggesting a specific approach to host-target connection,
and the implementation of specific tests. Since every embedded project is quite individual, test
harnesses and certain ideas will need to be modified. Creating useful test harnesses is actually one of
the most difficult tasks in writing new tests. Further, we need to keep in mind that unit testing is not tied
to a special implementation of a unit testing framework (like autounit) or a special implementation
language, nor is Quality Assurance handled by just including unit testing in the development process.

One of the most important things with unit testing is: Doing it! Further, it is highly recommended to start
integrating it early on in the development process. Unit testing can drastically help to make the
development schedule more predictable because it can dramatically reduce debugging time, although
we need to take into account the size of the necessary test code which can actually be even much
bigger that the code under test.

-.-.-

About the author Roland Stigge:
Roland Stigge is a Software Engineer employed by Philosys Software in Unterschleissheim nearby Munich. He is a Debian
developer and GNU maintainer, working on the most widely used Open Source operating systems since 2001 when he was
working for Epigenomics, Inc. After graduating in computer science from Humboldt University in Berlin, he started working in the
embedded business developing communication products with GNU/Linux operating systems. His main interests are quality
assurance, Open Source software and Linux/UNIX operating systems.

About Philosys Software GmbH:
Philosys Software has been founded in 1988. Philosys is an IT-services provider with a clear focus on UNIX-/Linux systems and
(technical) software development. Among our clients are well known brands, as there are BMW, Deutsche Telekom, Fujitsu-
Siemens, Infineon, Siemens and Thomson. Philosys’ offerings include project planning, software architecture and design con-
sulting, system integration and software implementation or development. For further information please visit our website:
http://www.philosys.de

www.philosys.de
mailto:info@philosys.de
mailto:stigge@philosys.de
http://www.philosys.de

